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On the Identifiability of rwitivariate
Life Distribution Functions

by
Haftali A. Langberg and iloshe Shaked

Abstract.

Let (Tl’ Tz) and (L, Lz) be two independent bivariate random vectors
with distributions F and H. Let Ul min(Tl. L)s Ty = min(T,, L2) and let
Gg,o(ss t) = plry <5, < t, Ty S Ly, Ty < Ly, Go’l(s. t) = Ply < s,
Lt TSl Ly < Ty, Gl’o(s, t) =Pl &, 1 KT, Ly < T Ty S L)
and Gl,l(s' t) = Plyy <, 1 <ty Ly < Ty Ly < TZ}' Under mild conditions
the distributions F and H are expressed explicitly as functionals of
GO,O‘ GO,I' Gl,o and Gl,l‘ Necessary and sufficient conditions for the
formulas to hold even when (Tl. Tz) and (Ll, Lz) are not independent are derived.
iumerous applications are indicated. Extension of the results to p-dimensional

distributions (p > 2) ts given.
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1. \ Introduction and Summary.
y OI(E
By observing a series system of d components (d = 2, 3, ...) we can

only determine its lifelength and the components that cause the system to failﬂ

In particular the lifelength of a series system that consists of a nonempty
TS

subset of the original d components is unobservable. Me refe’to the dis-

tribution function (d.f.) of the lifelength of this series system as an

unobservable d.f:P_For example, some of the original d components, such
as wires and switches, may be piaced in the system to support the operation
of the main components. The d.f. of the lifelength of the series system
that consists only of the main components is of great importance to the theory
of engineering reliability but is unobservable. f::;

Langberg, Proschan, and Quinzi (LPQ) (1978), although addressing themselves
to a different problem present, in particuiar, a way to relate the unobservable
d.f.'s to observable quantities (see Th. 4.1). Fiist, LPQ (1978) define

Zd - 1 observable subdistribution functions (s.d.f.'s). The value of an

unobservable s.d.f. at the point s(s > 0) is the probability that the ori-
ginal series system fails at a time less than or equal to s as a result

of the simultaneous failure of a particular nonempty subset of the d com-
ponents and of no other components. Then LP() (1978) express the various
unobservable d.f.'s as functionals of the observed s.d.f.'s, whenever the
lifelengths of the d components are independent and §atisfy a mild regularity
condition. Thus, they provide the iesearchars in the theory of engineering
relfability with a theoretical tool to determine the unobservable d.f.'s.

The problem of relating unobservale d.f.'s to observable s.d.f.'s has been
considered by several other researchers such as Peterson (1975), Tsfatis

(1975), and iiiller (1977).




The theoretical relationship discussed in the previous paragraph suggest
a "naive" method of estimating the unobservable d.f.'s. LPQ (1980) consider
the problem of estimating the various unobservable d.f.'s based on data
collected from n independent and identical series systems each consisting
of d components. First, LPQ (1980) estimate the observable s.d.f.'s by
their empirical counterparts. Then they replace the observable s.d.f's
by their empirical estimators in the respective functionals. Using this
method LPQ (1980) obtain the Product Limit Estimators (P.L.E.'s) for the
observable d.f.'s, first introduced by Kaplan and ieier (1958).

An important statistical problem is to test whether the life distribution
of a component, F, is exponential versus various wearout classes of alter-
natives on the basis of a random sample from the d.f. F in the absence of
the other d-1 nuisance components. Tests for these hypotheses have been
proposed, for example, by Proschan and Pyke (1967), Barlow (1968), Bickel
(1969), Bickel and Doksum (1969), Barlow and Doksum (1972), Hollander and
Proschan (1972), (1975), (1979), and Koul (1977), (1978a), (1978). There

seems to be a growing interest among statisticians to test these hypotheses

in a more realistic situation: uhere additional "nuisance" components are
present. Koul and Susarla (1978) and Chen, llollander, and Langberg (1980a),
(1980b) suggest tests for some of the hypotheses described above based on
the P.L.E.

In this paper we present a formula that relates unobservable multivariate
d.f.'s to observable multivariate s.d.f.'s. Thic formula suggest further
development of statistical estimation and testing procedures concerning

multivariate d.f.'s in the presence of "nuisance" components.




Assume that a pair of individuals, a wife and a husband for axample,
are under study. The observation of each of the two individuals is terminated
in the event of death or in case of a withdrawal from the study. The joint
lifelengths of the two individuals is of great importance to the theory
of biostatistics but is unobservable,

In Section 2 we relate the unobservable joint life distribution of the
two individuals to observable quantities. First we define 4 observable
joint s.d.f.'s. The value of an observable joint s.d.f. at times t, s(t, s > 0)
is the probability that the two individuals are removed from the study at
times less than or equal to t and s, respectively, as a result of a specific
combination of deaths and withdrawals. Then we express the unobservable
joint d.f. as a functional of the observable s.d.f's, vhenever some mild
conditions hold. Thus we provide the researchers in biostatistics with
a theoretical tool to determine the unobservable d.f,

Langberg and Shaked (1980a) utilize the theoretical relationship esta-
hlished in Section 2 to estimate the unobservable joint d.f. from a sample
of n independent and identical pairs of individuals. Following LPQ (1980)s
idea they obtain a bivariate P.L.E. for the unobservable bivarite d.f. and

establish the strong consistency, weak convergence and some other desirable

properties of the bivariate P.L.E. [For more details see Langberg and Shaked .
(1980a), (1980b)].
In Section 3 we consider a group of p individuals, p =1, 2, «cs, @

§ u family for example, and assume that each individual is exposed to d risks, j

d=2,3, ... . Using the results obtained in Section 2 we relate the joint

d.f. of the times to deaths of the p individuals from risk j, J =1, .e.p d,

to the observable s.d.f's. The value of an observable s.d.f. at times
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tl‘ ceey tp(tl, veoy tp > 0) is the probability that the p individuals die

o

‘ ; ' at times less than or equal to tl’ cees tp
the occurrence of a specific combination of risks.

, respectively, as a result of ]

Finally, we note that although we have chosen to employ the languages
of reliability theory, biostatistics and the theory of competing risks (series
system, components, death, withdrawal, risks, etc.) the results presented
here apply to any model where observations include (1) The time at which
a particular event occurs and (2) The cause(s) of the occurrence of the event.
As is the case, for example, in mortality studies (Hoel(1972)) and some
mathematical epidemiology models (see Billard, Lacayo and Langberg (1979),
Lacayo and Langberg (1980a), (1980b) and Langberg (1980).)

Throughout vwe define a product over an empty set of indicies as 1 and

an integral over an empty set as zero.
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2. The Bivariate case.

Consider a pair of individuals, a wife and a husband for example, with
lifelengths T1 and T2. The observation of each of the two individuals is
terminated in the event of death or in case of a withdrawal from the study.
Let L1 and L, denote the withdrawal times of the two individuals respectively.
lle assume that the random variables (r.v.'s) Tl’ Tz. L1 and L2 are defined
on a common probability space (g, B, P).

In this section we present the joint d.f. of the lifelengths (Tl, Tz)
as a functional of observable gquantities. To be more specific we introduce
two definitions and some notation.

Definition 2.1. ile say that individual i is removed from the study due

to death (withdrawal) and write &, = 1(¢, = 2) if T, < L.(L, < T,), i =1, 2.
i j ="V i

Definition 2.2. Let K be a function defined on (-», =). lie say that

K is a subdistribution function (s.d.f.) if K is nondecreasing, right-

continuous, and assumes values in [0, 1].

Let L7 min{Ti, Li} be the removal time of individual i, and let Gi be the
d.f. of 1, 1 =1, 2. Further, let F(t, s, I;, I,)) = P{r; < t, 7, <5,

€ = Il' €, = 12}. Il’ Ize{l, 2} be the observable joint s.d.f.'s and let
i(t, s) = P{T1 £t, T2 £ s} be the unobservable joint d.f. of the 1ifelengths

of the two individuals under consideration. For a s.d.f. K, let

R(t) = Vim K(s) - K(t) be the subsurvivalfunction corresponding to K, let
S

K(t-) = Vim_K(s), and let «(K) = sup{t: K(t) > 0}, Further, let Ko be the
s+t

continuous s.d.f. corresponding to K and let C(K)(D(K)) be the set of all
continuity (discontinuity) points of K. In this section we present the

d.f. i:i(+, ¢) as a functional of the s.d.f.'s: F(«, =, Il’ Iz). Il' I'z =1, 2,
provided that:
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(A.1) The lifelenqgths (Tl, TZ) and the withdrawal times (Ll’ Lz) are inde-

rendent random vectors,

and that

(A.2) For i =1, 2, the sets D(P{ti L P 1}) and l)(P(ti Lor &y = 21)
are disjoint.

First, we reduce the problem of obtaining the desired functional that
relates the observable joint s.d.f.'s to the unobservable joint d.f. con-
cerning two individuals to a similar, but simpler problem, concerning only

one individual. ilote that by Assumption (A.1)

(2.1) P{Tl > t, TZ >s) = P{Tl > tsz > S}P{Tz > s}
= P{Tl > t|1’2 > S}P{Tz > s} for te(-=,x), SE(-G,G(GZ)),

(2.2) The r.v.'s T2 and L, are independent ,

and that

(2.3) For st(-,a(Gz)) the conditional r.v.'s {T1|T2 > s} and {L1|‘l’2 > s}

are independent.

Further, by (A.2):

(2.4) For st(-,a(Gz)) the sets D(P{r1 L8y = ll't2 > s}) and
O(PLr; £+, & = 2|1, > s}) are disjoint.

Observe that to express i+, *) as a functional of the s.d.f.'s:
F(e, <, Il' lz). 11. 12 =1, 2, it suffices (a) to express P{T2 > ¢} as a
functional of the s.d.f.'s: Plry; < -, Ty & Lok, Plry < oy Ly < Tyhy
(b) to express PlT, > |1, > s} as a functional of the s.d.f.’s:

Phl £ TN & Lllt2 > s}y Pl € +y Ly < Tllr2 > s} for every se(-,u(Gz)) and




(c) to insert these functionals in Equation (2.1). This is done in Theorem

2.5, but first we need some preliminaries.
Let T and L be two independent r.v.'s representing, respectively, the

lifelength and withdrawal time of a single individual. Further, let

R W

v = min{T, L} be the removal time of the individual from the study and let

G denote the d.f. of t. We express now the unobservable survival function:

T

P{T > <} as a functional of the observed s.d.f.'s: P{r < -, T < L},

P{r -, L < T}. The following lemma is useful.

Lerma 2.3. Let Q(¢) be a s.d.f. Then for te(-=,a{Q)):

q(t) = vim Qu){ n [Q(a)IT(a-)1"
- |

Ut+=

(2.5) aeb(Q)

t
cexp{-f Eﬁ(a)]'ldQc(a)1-

For a proof of Lemma 2.1 see Lee and Thompson (1976), Th. 2.2.
| lle present novi the desired functional for a single individual.
1? Lemma 2.4. Let C and U be, respectively, the sets of continuity and
; discontinuity points of the s.d.f. P{t  «, T { L}, Assume that:
‘E (A.3) The r.v.'s T and L are independent,
and that
(A.4) The sets D and D(P{t < -, L < T}) are disjoint.
Then for te(-=, a(G)):

PCT >t} = 1 (G(a)1(G(a-)1"1)
ast
(2.6) aeb

t
cexp(-/ [S(a)1"1dP (re{(-=,ad3nC, T < L}1. ',‘

- Il

Proof. Uy Assumptions (A.3) and (A.4)
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(2.7)  Ta)[B(a-)1"L = P(T > a}(P{T 3 a}1°), ae(=, a(G)),

a
(2.8) P{r <a, TS L} = [ PIL > v}dP{T < v}, a€(-e, =),

-

a
Pt Ca, L<TY = [P{T > v}dP(L < v}, a€(-e, =),

and

(2.9) P{r > a} = P{T > a}P{L > a}, ae(-», =),
Thus, by Assumption (A.4)

(2.10) The sets D(P(T £ <} )n{(-=, a(G))} and
D(P{L < *})n{(-=, a(G))} are disjoint.

Let x denote the indicator function. Then by Assumption (A.3) and
Equations (2.8), (2.9) and (2.10):

t
(2.11) [ x(C)a)G(a)) dap{r < a, TC L} =

t
= [ x(C)(a)[PLT > a}1™YdP(T < a}, te(-=,a(6)).

Finally, note that «(G) < sup{t: P{T > t} > 0} and that Cn{(-=,a(G))} =
C(P{T < *}n{(-=,a(G))}. Consequently the desired result follows from
Equations (2.5), (2.7), and (2.11). ||

ile return now to our original problem, and present the functional that
relates the joint d.f. of the lifelengths of the two individuals considered
to their observable s.d.f.'s.

Theorem 2.5. Assume (Tl‘ Tos Ly Lz) satisfies Conditions (A.1) and

(A2). Let CZ(DZ) be the sets of continuity (discontinuity) points of the
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s.d.f, P{t2 £, T2 S-LZ}’ let cl,s(Dl,s) be the sets of continuity (discon-
tinuity) points of the conditional s.d.f. P{r; < -, T) < L;|T, > s}, and

let 4 s* sup{t: P{t1 > tlt2 > s} > 0}, Se(--,a(Gz)). Then for

(t, s)e{(u,v): ve(-o,a(GZ)), ue("’“l,v)}:

PT, >t, T, > s} = {ugs [Eé(u)][ﬁz(u-)}'l}

a]
(2.12) { 5<t [P{'r1 > vlt2 >s}][P(11 > v|t2 >s1]1 %)
veDl’S

S
sexpf-f [G,(w)1"L(C,) (u)dPir, < u, T, < LD

t
sexp{-f [P'r1 > v|'t2 >s ]-lx(C1 s)(v)dP{'r1 <v, Tl _<__L1|t2 > s}l.

Proof. First note that by Assumptions (A.1) and (A.2) Conditions (A.3)
and (A.4) hold for (T, L) = (T2, Lz).
Thus, by Lemma 2.4 for se(-w,a(GZ)):

— — -1
P{T, > s} = { 1 [G,(a)][G,(a=)]""}
2 acs 2 2
(2.13) aeh,
S — -
-exp{-IO[Gz(u)] 1x(CZ)(u)dP{t2 <u, T2 S.Lz}'

Let s (-,a(Gz)). Note that by Assumptions (A.1) and (A.2) Conditions
(A.3) and (A.4) hold for the random pair (T, L) that is stochastically equal
to the conditional random pair [(Tl' Ll)|12 > s}. Thus, by Lenma 2.4 for
=]
P{T; > t|r, > s} = v]:t CPlxy > vir, > s}I[P{r; 2 v|r, > s}]

(2.14) veD) ¢

cexp{-/ [P{t1 > vlt2 > s}]~lx(C1’s)(v)dP{tl £v, Tl £ Lllt2 > s}).




Consequently the desired result follows by Equations (2.1), (2.13)

and (2.14) by insertion. ||

In many life testing situations the d.f.'s of the lifelengths and censoring
times of the two individuals considered are anticipated to be strictly in-
creasing smoothly on [0, =). For these cases we obtain now from Theorem 2.5

a corollary of practical importance.

Corollary 2.6. Let T Ty be continuous r.v.'s such that for t, s€(-e,=)
p{T1 >t, T, s}, P{Ll >t, L, s} are strictly positive. Assume Condi-
tion (A.l) holds. Then for t, se€(-=,»):

S
PTy > £, Ty > b = expl-] [Gp(w)17laPlry < u, Ty < L)
(2.15

-?Q[P{Tl > vlfz > s}].ldP{Tl < v, T1 < |_1|1'2 > s}l}.

Proof. Apply Theorem 2.5 aad note that a(Gz) e o= S€(-w, ),
and that D,, Dl,sse('°’°) are empty sets. ||

Finally, we note that the relationship between the unobservable d.f. and
the observable s.d.f's given by Equation (2.12) holds for some cases where
the independence assumption, given by (A.1), does not hold. First, ve present
a necessary and sufficient condition for the relationship given by (2.12)
to hold. Then we give an example for which Assumption (A.1) does not hold,
however the desired relationship, given by Equation (2.12), holds. We need

the following Yemma,

M et e e .

Lemma 2.7. (LPQ (1980), Th. 4.4) Let (L, T) be a pair of r.v.'s

defined on a common probability space. Let C, O be as in Lemma 2.4, but
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‘ now do not assume Conditions (A.2; cr (\.4). Then equation (2.6) holds

' ‘ if the following conditions are satisfied. j

(A.5)  [P(T> 6} > 637} - [6(£)6(t-)1", teni(=,a(6)))
| ) ! . teCn{(~=,a(6))},

and
(A.G) For teCn{(-=,a(G))}, PIL > t|T =t} = .
P{L > t|T > t} a.s. with respect to P{T € }.

We are ready to present the necessary and sufficient conditions.

Theorem 2.8. Let Tl’ Ll’ T2’ and L2 be r.v.'s defined on a common
probability space. Let CZ’ 02’ cl’s, “l.s’ a] ¢ se(-.a(Gz)) be as in
Theorem 2.5. Assume Condition ‘°.1) hel4s, Then Equation (2.12) holds
iff the following conditions hold. ]

-] i
(A7) (T, > 1P, 3 5317 = { o2 P IG(ETT tepnilomsalG)) z
¢ 2= 1 s teczﬂ{(-.’a((;z))} :

; (A.8) [P{'l’1 >t, 1, s}][Pl'l'1 2t, ) s}]"1 =

JPty >t > NIy 2 ¢, 7y L, te (0l(—=ay () i

. i
1 > t(cl’sn(('..al’s’}. 4

for tt(-,al ,S) R S¢(".u(62) ).

(A.9) For scczn{(--.a(Gz))}, PiL, 2 ssz =5} = ‘,‘ i

PL, > s|T2 > s} a.s. with respect to P{T, -},
and

. (A.10)  For teC; (ni(-=,a; ()}, s€(-=,a(G,))

b PUL, 2t|1y > s, Ty =t} = PRy D> tlr, > 5, Ty >t}
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a.s. with respect to P{T; < «| 1, > s}.

Proof. ilote that
(2.16) P{TyeB,eT, < Ly} = éP{Lz 2 ulT, = uldP(T, < u}
for all Borel sets in (-o,a(Gz)) and that

(2.17) P(T1B, T) < Lylt, > s} =
= éP{L1 2 ult, > s, Ty = ukdP{T; < uf7, > s}

for all Borel sets in ('°’°(Gl))'

First, assume Conditions (A.7) through (A.10) hold. Then Equation
(2.12) follows by substitution and by Equations (2.6), (2.16) and (2.17).

How, assume that Cquation (2.12) holds. Then in particular the equa-
tion holds for t = 0, SG(-.,G(GZ)). Conditions (A.7) and (A.9) follow now
by Lemma 2.7. Since from (A.7) and (A.9) the pair (TZ’ Lz) satisfies Equa-
tion (2.6), it follows from Equations (2.1) and (2.12) that the conditional
pair ({Tllr2 > s}, {Lllr2 > s}), Se(--,u(Gz)) satisfies Equation (2.6).
Thus, Conditions (A.8) and (A.10) follow by Lemma 2.7. ||

Finally we present an example where the independence assumption, given
by (A.1), does not hold, but the desired relationship given by Equation (2.12)
is satisfied. i
The following definition is nceded,

Definition 2.9. (itarshall and Olkin (1967).) Let Aps ¢ $1cil, ..., n}

be nonnegative real numbers, I Ap 0, and let Vis ¢ #Icil, cccy, 0}
¢#Ic(l,...n,}

be independent exponential r.v.'s with rates Aps 6 #1cil, ..., n},

respectively. The random vector < U;, ..., U, > has a riarshall-Olkin tuliti-

variate Exponential Distribution (i'.0./1.E.U.) with parameters
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Aps ¢ # Ic{l, ..., n} if the two random vectors < Uy ..., U, > and
< min{UI: I, lel}, ..., min{ul: I,nel} > are stochastically equal.,
Example 2.10. Let < Ul’ eoes 04 > have a .0.il.E.D. with parameters
App ¢ # Ic(l, ..., 4}, and let us assume that < T,, Ty, L}, L, > and
< Ups «ees Uy > are stochastically equal. Let D,y Dy ¢ and ay o, se€(—, a(Gy))

be as in Theorem 2.5. lote that a(G,) = a, _ = =, that D,, D, . are empty
2 1 2’ "1,

»S
sets, and that the two random pairs (Tl’ T2) and (L,, Lz) are not necessarily
independent. lle want to show that formula (2.12) holds. To obtain the
desired result it suffices, by Theorem 2.8, to verify conditions (A.9) and
(A.10). These two conditions follow by some simple calculation with inde-
pendent exponential r.v.'s. Equation (2.1) does not hold in general, however if
1{1’3’4} "An.4 " 0, then Equation (2.1) holds.

Note that by Assumption (A.1)

PT, >t, T, > s} = P(T, > sjty > t}P{T; > tifor
s‘(‘.a "') ’ t‘("»“(Gl))-

Thus, Theorems 2.5, 2.8, and Corollary 2.6 hold when we exchange T1 and
Finally, note that the if we exchange T1 and L1 and Té and L2 Theorems
2.5, 2.8, and Corollary 2.6 hold for the random pair (Ll' Lz).
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3. The iwultivariate Case.

Consider a group of p individuals, a family for example, p =1, 2, ...,
and assume that each individual is exposed to d risks, d =2, 3, ... . Let
denote the time to death of individual i from risk j by a nonnegative r.v.
Ti,j' i=1, eeey P, and let To,j e, j=1, ..., d. Assume that al) these
r.v.'s are defined on a common probability space (Q,B,P).

In this section we present the joint d.f. of the tines to death of
the p individual from risk j: P{Tl’j‘g Sy eees Td,j £ +} as functionals
of observable quantities. To be more specific we introduce some notation.
Throughout we fix the risk considered and denote it by j. Let Lij =

min{Tiq. g=1, ..., d, g # j}, let T = min{L; T, j} be the lifelength

»J’
of individual i and let Gi be the d.f. of T i=1, ¢eey p. Further, let

Ei,j = 1 on the set {Ti,j S-Li,j}’ and = 2 on the set {Li,j < Ti,j}’

1= 1, eosey p, ]et Hj(tl, soey tp) < P{Ti’j Sti) i = 1, seey p} be t"E
probability that the p individuals die at times less than or equal to tis eees tp.
respectively, from risk j in the absence of all the other risks, and let

Fj(tl. eoey t N 11, esey Ip) = P{ti St, Ei,j = I.ig is= l, ccey p}!

P
Ii = l’ 2, 1 = l’ LN XY p’ be the Observed S.d.f.'S: tm prohabi]ity

that the p individuals die at times less than or equal to tl’ eeey t_, respectively,

p
as a result of a specific combination of risks. In this section we present

each of the unobservable d.f.'s bs(-, .ee» *) as a functional of the observed
s.d.f.'s: Fj(-, cees % Iy oeey Ip), provided that:

(8.1) The random vectors < T1 y see T > q=1, ..., d are independent,
]

q P»q
and that

(b.2) For r =1, ..., p the sets:




D(P(rrig . Er,q = 1}) and D(P{tr‘i ".gr,q = 2}) are disjoint.
Theorem 3.1. Let CJ (o] ) be the sets of contin-

r,togcootr_l r,to.oo-.tr_l
uity (discontinuity) points of P{rr‘g . Er,j =1, Yy > ti’ 120, ecoey r =1},

a3 L

r= l. ceey p’ tl’ evey tpe('°,°). to T =w, Further. ]et al)to d

supl{t: Plr, > t} > O}, U tgseeest, ) * supft: PLr. >ty >ty weey Tt

t1< ul,to’ tz < a2.t0.t1’ soey tr < “r’tojcoo. tr-l, rs= 2' eses Ps

ty = -=. Assume Conditions (8.1) and (B.2) hold. Then for (tgs ..., tp)€

{(u0. ooey Up): uo = ewo, ur < ar’uo’...’ur-l’ r = 2! ecey p}!

(3.1) P{Tl,j >ty eees Tp,j > tp} =

= o

=[ [Plr. > a, 1y >ty i =1, oe. r-1}]

R
r=1 a<

(ad

a—n
aeog’tO"'°’tr-1

(IPLL) 3, 15 €ty 1 =1, ceey 7 - 114 ]

113 (cd ) (a)

t
cexpttP | P -
exp{ Er=1-£ [P{Tr > a, T.i > t'l’ 1 0y cees "’tO"“’tr-l

o dPlr, <3, 6. s =1, 7> t, i=0, cce,r -1}

r,J

Proof. First, note that by Condition (B.1)

P(Tl’j > tl’ ooy T ’j > tp} =

P

P
*rEIP{Tr’j > tr|T1’j >tys =0, ooy - 1} =

P
’rEIP{Tr’j > trlfi > ti’ i = 0, evey v - 1}0
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Consequently the desired result follows now by Condition (B.2) and Theorem

A e

2.5 applied to the conditional pairs [(T. ., L. .}t >ty 1 =0, 0o, 1 -1]
r,g® r,j'li i

r=1, eeey po ||
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